Wednesday, 18 October 2017

Moviendo El Código Fuente Promedio


Tengo esencialmente una matriz de valores como este: La matriz anterior es simplificada, estoy recolectando 1 valor por milisegundo en mi código real y necesito procesar la salida en un algoritmo que escribí para encontrar el pico más cercano antes de un punto en el tiempo. Mi lógica falla porque en mi ejemplo anterior, 0.36 es el pico real, pero mi algoritmo miraría hacia atrás y vería el último número 0.25 como el pico, pues hay una disminución a 0.24 antes de él. El objetivo es tomar estos valores y aplicarles un algoritmo que los suavice un poco para que tenga valores más lineales. (Es decir: la identificación como mis resultados para ser curvy, no jaggedy) se me ha dicho que aplique un filtro de media móvil exponencial a mis valores. ¿Cómo puedo hacer esto? Es realmente difícil para mí para leer las ecuaciones matemáticas, trato mucho mejor con el código. ¿Cómo proceso los valores en mi matriz, aplicando un cálculo de promedio móvil exponencial para igualarlos? Preguntó Feb 8 12 at 20:27 Para calcular una media móvil exponencial. Usted necesita mantener un poco de estado alrededor y usted necesita un parámetro de ajuste. Esto requiere una pequeña clase (asumiendo que está usando Java 5 o posterior): Instantiate con el parámetro de decadencia que desea (puede tomar la afinación debe estar entre 0 y 1) y luego use average () para filtrar. Al leer una página sobre alguna recurrencia matemática, todo lo que realmente necesita saber al convertirlo en código es que a los matemáticos les gusta escribir índices en matrices y secuencias con subíndices. Sin embargo, la EMA es bastante simple, ya que sólo es necesario recordar un valor antiguo sin arrays de estado complicado requerido. Respondió 8 Feb a las 20:42 TKKocheran: Bastante. No es bueno cuando las cosas pueden ser simples (si comienza con una nueva secuencia, obtenga un nuevo averager). Observe que los primeros términos de la secuencia promedio saltarán alrededor de un bit debido a efectos de límite, pero obtendrá aquellos con otras medias móviles también. Sin embargo, una buena ventaja es que usted puede envolver la lógica del promedio móvil en el averager y experimentar sin molestar el resto de su programa demasiado. Ndash Donal Fellows Feb 9 12 en 0:06 Estoy teniendo un rato difícil entender sus preguntas, pero intentaré contestar de todos modos. 1) Si su algoritmo encontró 0.25 en lugar de 0.36, entonces es incorrecto. Está mal porque asume un aumento o una disminución monotónica (que siempre sube o baja siempre). A menos que usted promedio TODOS sus datos, sus puntos de datos --- como usted los presenta --- son no lineales. Si realmente desea encontrar el valor máximo entre dos puntos en el tiempo, corte su matriz de tmin a tmax y busque el máximo de ese subarray. 2) Ahora, el concepto de promedios móviles es muy simple: imagina que tengo la siguiente lista: 1.4, 1.5, 1.4, 1.5, 1.5. Puedo suavizarlo tomando el promedio de dos números: 1.45, 1.45, 1.45, 1.5. Observe que el primer número es el promedio de 1,5 y 1,4 (segundo y primeros números), la segunda (nueva lista) es el promedio de 1,4 y 1,5 (tercera y segunda lista antigua) la tercera (nueva lista) el promedio de 1,5 y 1,4 (Cuarto y tercero), y así sucesivamente. Podría haberlo hecho el período tres o cuatro, o n. Observe cómo los datos son mucho más suaves. Una buena manera de ver los promedios móviles en el trabajo es ir a Google Finance, seleccionar una acción (probar Tesla Motors bastante volátil (TSLA)) y hacer clic en technicals en la parte inferior de la tabla. Seleccione Promedio móvil con un período determinado y Promedio móvil exponencial para comparar sus diferencias. La media móvil exponencial es sólo otra elaboración de esto, pero los pesos de los datos más antiguos menos de los nuevos datos de esta es una manera de sesgar el alisamiento hacia la parte posterior. Por favor, lea la entrada de Wikipedia. Por lo tanto, esto es más un comentario que una respuesta, pero el pequeño cuadro de comentarios era sólo a pequeño. Buena suerte. Si usted está teniendo apuro con la matemáticas, usted podría ir con una media móvil simple en vez de exponencial. Así que la salida que obtendrías serían los últimos x términos divididos por x. Pseudocódigo no comprobado: Tenga en cuenta que tendrá que manejar las partes inicial y final de los datos, ya que claramente no puede medirse los últimos 5 términos cuando está en su segundo punto de datos. Además, hay maneras más eficientes de calcular este promedio móvil (suma suma - más reciente más reciente), pero esto es para obtener el concepto de lo que está sucediendo a través de. Respondió Feb 8 12 at 20: 41Moving Average El Indicador Técnico de Media Móvil muestra el valor promedio del precio del instrumento durante un cierto período de tiempo. Cuando se calcula la media móvil, se calcula la media del precio del instrumento para este período de tiempo. A medida que el precio cambia, su promedio móvil aumenta o disminuye. Hay cuatro tipos diferentes de promedios móviles: Simple (también conocido como Aritmética), Exponencial. Suavizado y ponderado. El Promedio móvil puede calcularse para cualquier conjunto de datos secuenciales, incluyendo precios de apertura y cierre, precios más altos y más bajos, volumen de operaciones o cualquier otro indicador. A menudo es el caso cuando se usan promedios móviles dobles. Lo único en que los promedios móviles de diferentes tipos divergen considerablemente entre sí, es cuando los coeficientes de peso, que se asignan a los últimos datos, son diferentes. En el caso de que estamos hablando de Media móvil simple. Todos los precios del período de tiempo en cuestión son iguales en valor. La media móvil exponencial y la media móvil ponderada lineal atribuyen más valor a los precios más recientes. La forma más común de interpretar el precio promedio móvil es comparar su dinámica con la acción del precio. Cuando el precio del instrumento sube por encima de su promedio móvil, aparece una señal de compra, si el precio cae por debajo de su media móvil, lo que tenemos es una señal de venta. Este sistema de comercio, que se basa en la media móvil, no está diseñado para proporcionar la entrada en el mercado justo en su punto más bajo, y su salida a la derecha en el pico. Permite actuar de acuerdo con la siguiente tendencia: comprar poco después de que los precios lleguen al fondo, y vender poco después de que los precios hayan alcanzado su punto máximo. Los promedios móviles también pueden aplicarse a los indicadores. Es ahí donde la interpretación de las medias móviles de los indicadores es similar a la interpretación de los promedios móviles de los precios: si el indicador sube por encima de su media móvil, es probable que continúe el movimiento del indicador ascendente: si el indicador cae por debajo de su promedio móvil, Significa que es probable que siga bajando. Estos son los tipos de promedios móviles en el gráfico: Promedio móvil simple (SMA) Promedio móvil exponencial (EMA) Promedio móvil suavizado (SMMA) Promedio móvil ponderado lineal (LWMA) Puede probar las señales comerciales de este indicador creando un Asesor experto En MQL5 Asistente. Cálculo Promedio móvil simple (SMA) Simple, en otras palabras, el promedio móvil aritmético se calcula sumando los precios del cierre del instrumento durante un cierto número de períodos individuales (por ejemplo, 12 horas). Este valor se divide entonces por el número de tales períodos. SMA SUM (CERRAR (i), N) / N SUM SUM CERRAR (i) período actual precio de cierre N número de períodos de cálculo. Promedio móvil exponencial (EMA) La media móvil suavizada exponencialmente se calcula sumando una cuota determinada del precio de cierre actual al valor anterior de la media móvil. Con los promedios móviles suavizados exponencialmente, los últimos precios de cierre son de mayor valor. La media móvil exponencial del P por ciento se verá así: EMA (CERRAR (i) P) (EMA (i - 1) (1 - P)) CERRAR (i) De un período anterior P el porcentaje de utilización del valor del precio. Promedio móvil suavizado (SMMA) El primer valor de esta media móvil suavizada se calcula como la media móvil simple (SMA): SUM1 SUM (CLOSE (i), N) La segunda media móvil se calcula de acuerdo con esta fórmula: SMMA (i) (I) (N) () () () () NMA (i - 1) ) / N SUM sum SUM1 suma total de los precios de cierre para N periodos se cuenta desde la barra anterior PREVSUM suma suavizada de la barra anterior SMMA (i-1) media móvil suavizada de la barra anterior SMMA (i) media móvil suavizada de la barra Barra actual (excepto la primera) CERRAR (i) precio de cierre actual N período de suavizado. Después de conversiones aritméticas, la fórmula puede simplificarse: SMMA (i) (SMMA (i - 1) (N - 1) CERRAR (i)) / N Promedio móvil ponderado lineal (LWMA) En el caso de la media móvil ponderada, Tiene más valor que los datos más antiguos. La media móvil ponderada se calcula multiplicando cada uno de los precios de cierre dentro de la serie considerada por un cierto coeficiente de ponderación: LWMA SUM (CLOSE (i) i, N) Precio Suma (i, N) suma total de coeficientes de peso N período de suavizado. Código fuente avanzado. Com. Haga click aquí para descargar. Un filtro de media móvil promedia un número de muestras de entrada y produce una única muestra de salida. Esta acción de promedio elimina los componentes de alta frecuencia presentes en la señal. Los filtros de media móvil se utilizan normalmente como filtros de paso bajo. En el algoritmo de filtrado recursivo, las muestras de salida anteriores también se toman para promediar. Esta es la razón por la que su respuesta al impulso se extiende hasta el infinito. Hemos desarrollado un enfoque computacional bajo para el reconocimiento del iris basado en el filtro de media móvil 1D. El promedio simple se utiliza para reducir los efectos del ruido y una mejora significativa en la eficiencia computacional se puede lograr si realizamos el cálculo de la media de una manera recursiva. Este código utiliza una versión optimizada de las rutinas de Libor Maseks para la segmentación del iris disponible aquí. Libor Masek y Peter Kovesi. MATLAB Código fuente para un sistema de identificación biométrico basado en patrones de iris. La Escuela de Ciencias de la Computación y la Ingeniería de Software, la Universidad de Western Australia, 2003. Términos de Index: Matlab, fuente, código, iris, reconocimiento, movimiento, promedio, filtro, bajo, computacional.

No comments:

Post a Comment